Основные этапы работы состояли в исследовании:
Научные материалы / Аденилатциклазный сигнальный механизм / Основные этапы работы состояли в исследовании:
Страница 9

Примечание: В скобках – активность АЦ в%. Активность АЦ без пептидов принята за 100%.

Для выяснения типов G белков, вовлеченных в АЦ сигнальный механизм действия инсулина и ИФР-1 были использованы бактериальные токсины (коклюшный и холерный), которые модифицируют α-субъединицы Gi и Gs белков.

Коклюшный токсин вызывает АДФ-рибозилирование αi-субъединицы Gi белка, что ведет к потере его функциональной активности (Milligan, 1988; Reisine, 1990). Известно, что βγ-димер Gi белка обладает собственной регуляторной способностью и может стимулировать активность ФИ-3-К. Обработка мышечных мембран крысы и моллюска коклюшным токсином приводила к блокированию АЦ стимулирующего эффекта, как инсулина, так и ИФР-1 (таблица 7), что можно объяснить нарушением диссоциации гетеротримерного Gi белка на αi-субъединицу и βγ димер в условиях действия коклюшного токсина.

Таким образом, коклюшный токсин, предотвращая индуцируемую инсулином или ИФР-l стимуляцию активности ФИ-3-К, реализуемую через βγ-зависимый механизм, тормозит активацию АЦ.

Влияние холерного токсина на мембраны приводит к блокаде ГТФ-азной активности αs-субъединицы и тем самым переводит её в перманентно активированное состояние. В связи с этим обработка мембран холерным токсином может повлечь за собой стимулирование каталитической активности АЦ и наряду с этим ослабление регуляторных эффектов гормонов, действие которых на АЦ осуществляется через Gs белок (Milligan, 1988; Reisine, 1990). Обработка фракции мышечных мембран крысы и моллюска холерным токсином приводит к 2х-кратному увеличению базальной активности АЦ и снижению стимулирующего эффекта инсулина и ИФР-1 на активность фермента (таблица 7), что полностью согласуются со сведениями литературы и указывает на вовлеченность Gs белка в активацию АЦ с участием инсулина или ИФР-1.

Таким образом, совокупность данных, полученных с использованием коклюшного и холерного токсинов, указывает на участие как Gi, так и Gs белков в АЦ сигнальном механизме действия инсулина и ИФР-l.

Участие фосфатидилинозитол-3 киназы в реализации АЦ стимулирующего эффекта инсулина и ИФР-1

Для выяснения участия ФИ-3-К в АЦ сигнальном механизме действия пептидов инсулинового суперсемейства (инсулина и ИФР-1) был использован специфический ингибитор этого фермента - вортманнин. Инкубация мышечных мембран крысы и моллюска с вортманнином (10-9–10-7М) несколько снижает базальную активность АЦ (таблица 8). В отсутствии ингибитора инсулин и ИФР-1 отчетливо стимулируют активность АЦ. Между тем, АЦ стимулирующий эффект инсулина и ИФР-1 снижается в зависимости от концентрации ингибитора (10-9–10-7М). Ингибирующее действие вортманнина было наиболее выражено при концентрации 10-7М (таблица 8). Установленные факты свидетельствуют об участии ФИ-3-К в АЦ сигнальном механизме действия инсулина и ИФР-1 в мышечных тканях изучаемых объектов.

Таблица 8. Влияние вортманнина (10–9М–10–7М) на стимуляцию ИФР-1 (10–8М) и инсулином (10–8 М) активности АЦ в мембранной фракции скелетных мышцах крыс и гладких мышц моллюска Anodonta cygnea

Активность АЦ (пкмоль цАМФ/мин/мг белка)

объекты

 

Крысы

   

Моллюски

 

воздействия

без пептида

ИФР-l

инсулин

без пептида

ИФР-l

инсулин

без ворманнина

21±1.6

38.2±1.0*

41.4±2.3*

17.8±1.0

41.1±2.6*

24.5±1.0*

+вортманнин

10–9М

17.9±2.0

9.4±1.3

9.7±1.4

15.8±2.0

14.6±1.3

14.2±0.4

+вортманнин

10–8М

16.5±2.3

8.6±1.3

8.4±1.3

14.6±2.3

13.9±0.8

11.6±1.0

+вортманнин

10–7М

13.2±1.9

6.3±0.9

6.8±0.8

14.3±0.9

13.8±1.8

7.4±0.5

Страницы: 4 5 6 7 8 9 10 11 12 13