Нейтрофилы
Научные материалы / Нейтрофилы
Страница 5

С помощью интерференционной микроскопии различают 2 области контакта. Двигаясь, нейтрофил образует область плотного прилипания, это хвост и боковые отростки клетки, а область менее плотного прилипания образуется с телом клетки. Так как лейкоцит способен двигаться по неклеточной поверхности (стеклу), то можно наблюдать, как клетка теряет часть мембранного и цитоплазматического материала в виде следа на стекле. Это свидетельствует о плотном контакте с субстратом. Чтобы ослабить плотность контакта надо увеличить концентрацию сывороточного альбумина (King C. et. al 1980).

Натяжение отростка примыкающего к субстрату подтягивает клетку и образует новый участок для контакта с субстратом. Реакции прилипания повторяются многократно и составляют процесс распластывания клеток (Васильев Ю.М., Гельфанд И.М. 1977). Отросток, который только что начал образовываться не может прикрепиться к субстрату (стеклу) (King C.A., Preston T. M., Miller R.H. Donovan P. 1980).

Затем идет реакция стабилизации, которая приводит к разделению края клетки на активные и неактивные участки. Разделение приводит к вытягиванию клетки в переднезаднем направлении и делает её асимметричной. Следовательно, движение клетки становится возможным лишь после возникновения асимметрии. Но до сих пор неясна роль бегущей волны сокращения от переднего края к телу клетки и общего сокращения кортикального матрекса в хвосте клетки. Некоторые авторы считают, что сокращения в области хвоста участвуют в продавливании цитоплазмы из тела клетки в ламеллоподию (Coates T.P. et. al 1992).

На заднем конце движущейся клетки есть хвост и ретракционные волокна. Хвост представляет скопление на конце клетки концов ретракционных волокон. Хвост нейтрофила адгезивен к субстрату и в нем наблюдаются сокращения. Образовавшаяся ламеллоподия вступая в контакт с субстратом создает натяжение в хвосте клетки, вызывая этим его отрыв от субстрата и перемещение клетки вперед. Когда перемещение клетки осуществилось, ламеллоподия исчезает и наступает кратковременное «покоящееся состояние». Затем снова начинают образовываться новые ламеллоподии и ретракционные волокна, и всё повторяется сначала (Нерсесова 1977).

Цитоплазма у нейтрофилов находится в постоянном движении. Когда клетка пребывает в состоянии покоя, то токи цитоплазмы беспорядочны, а когда клетка движется, они направлены внутрь ламеллоподии на ведущем крае.

Нейтрофил способен производить сокращения. Это предполагает наличие сократительных структур. Актин и миозин - белки, которые находятся в мышечных клетках. В нейтрофилах, которые не имеют мышечных структур, тем не менее, есть белки сходные с актином и миозином. Актиноподобный белок очень похож на мышечный актин по молекулярному весу, структурной организации, способности активировать миозиновую АТФазу, связываться с миозином. У клеток, которые имеют не мышечную подвижность, актин вместе с миозином составляет сократительную систему, но при этом актин выступает как структурный белок. В не мышечных клетках 50% актина находится в неполимеризованной форме (G – актин), а в мышечных клетках актин на 100% полимеризован (F – актин). Такое содержание актина G и F в не мышечных клетках обусловлено взаимодействием актина с актин – связывающими белками. Известно более 100 актин связывающих белков. Альфа – актинин сшивает филаменты F – актинового геля. Другой важный белок это гельзолин. Он принимает участие в локомоции (движение обеспечивающее активное перемещение в пространстве) и транспорте везикул (пузырьков) через кортекс.

Страницы: 1 2 3 4 5 6 7 8 9 10